首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   1篇
化学   40篇
数学   3篇
物理学   5篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   6篇
  2011年   2篇
  2010年   3篇
  2007年   2篇
  2006年   6篇
  2005年   2篇
  2003年   1篇
  1984年   2篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有48条查询结果,搜索用时 343 毫秒
21.
Over the years, several methods have been developed to effectively represent the chemical behavior of solutes in solvents. The environmental effects arising due to solvation can generally be achieved either through inclusion of discrete solvent molecules or by inscribing into a cavity in a homogeneous and continuum dielectric medium. In both these approaches of computational origin, the perturbations on the solute induced by the surrounding solvent are at the focus of the problem. While the rigor and method of inclusion of solvent effects vary, such solvation models have found widespread applications, as evident from modern chemical literature. A hybrid method, commonly referred to as cluster-continuum model (CCM), brings together the key advantages of discrete and continuum models. In this perspective, we intend to highlight the latent potential of CCM toward obtaining accurate estimates on a number of properties as well as reactions of contemporary significance. The objective has generally been achieved by choosing illustrative examples from the literature, besides expending efforts to bring out the complementary advantages of CCM as compared to continuum or discrete solvation models. The majority of examples emanate from the prevalent applications of CCM to organic reactions, although a handful of interesting organometallic reactions have also been discussed. In addition, increasingly accurate computations of properties like pK(a) and solvation of ions obtained using the CCM protocol are also presented.  相似文献   
22.
In the present work, both polypyrrole (PPy) and optimized polypyrrole–magnesium ferrite (PPy-MgFe2O4) hybrid nanocomposite were synthesized separately by simple oxidative chemical polymerization method and then structurally characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The FTIR spectrum of the composite showed the presence of characteristic absorption bands of both PPy and MgFe2O4 in the composite confirming interfacial interaction of PPy with MgFe2O4. That this interaction is not affected by crystalline behaviour of predominant MgFe2O4 particles but that MgFe2O4 has embedded in PPy matrix was confirmed by XRD studies. Agglomerated granular spherical morphology of the composite was confirmed by SEM studies. Decrease in AC conductivity of the composite as compared to PPy due to the formation of interfacial heterojunction barrier between p-type PPy and n-type MgFe2O4 was confirmed experimentally and well supported theoretically by calculating binding energy, hopping distance and density of states at Fermi level of PPy and the composite as per CBH model.  相似文献   
23.
We study the depletion, pair interaction, and phase behavioral characteristics of proteins in polymer solutions. We use a McMillan-Mayer-like approach [W. G. McMillan, Jr. and J. E. Mayer, J. Chem. Phys. 13, 276 (1945)] to suggest that the depletion characteristics should be studied at an effective polymer concentration which is a function of both the average polymer and the protein concentrations. In the protein limit, we show that the volume of the polymer depletion layers exceeds the size of the proteins, leading to effective polymer concentrations typically in the semidilute and concentrated regimes even when the average polymer concentrations are in the dilute regimes. We propose an approximate approach that accounts for the multibody depletion overlaps, and use an accurate numerical solution of polymer mean-field theory to address depletion characteristics in these regimes which are characterized by both the importance of polymer interactions as well as the curvature of the proteins relative to the correlation length of polymers. We show that the depletion characteristics of the protein-polymer mixture can be quite different when viewed in this framework, and this can have profound consequences for the phase behavior of the mixture. Our theoretical predictions for the phase diagram match semiquantitatively with published experimental results.  相似文献   
24.
Even in the modern era of precision medicine and immunotherapy, chemotherapy with platinum (Pt) drugs remains among the most commonly prescribed medications against a variety of cancers. Unfortunately, the broad applicability of these blockbuster Pt drugs is severely limited by intrinsic and/or acquired resistance, and high systemic toxicity. Considering the strong interconnection between kinetic lability and undesired shortcomings of clinical Pt drugs, we rationally designed kinetically inert organometallic Pt based anticancer agents with a novel mechanism of action. Using a combination of in vitro and in vivo assays, we demonstrated that the development of a remarkably efficacious but kinetically inert Pt anticancer agent is feasible. Along with exerting promising antitumor efficacy in Pt-sensitive as well as Pt-resistant tumors in vivo, our best candidate has the ability to mitigate the nephrotoxicity issue associated with cisplatin. In addition to demonstrating, for the first time, the power of kinetic inertness in improving the therapeutic benefits of Pt based anticancer therapy, we describe the detailed mechanism of action of our best kinetically inert antitumor agent. This study will certainly pave the way for designing the next generation of anticancer drugs for effective treatment of various cancers.  相似文献   
25.
Nitric acid is manufactured by oxidizing ammonia where the ammonia comes from an energy demanding and non-eco-friendly, Haber–Bosch process. Electrochemical oxidation of N2 to nitric acid using renewable electricity could be a promising alternative to bypass the ammonia route. In this work, we discuss the plausible reaction mechanisms of electrochemical N2 oxidation (N2OR) at the molecular level and its competition with the parasitic oxygen evolution reaction (OER). We suggest the design strategies for N2 oxidation electro-catalysts by first comparing the performance of two catalysts – TiO2(110) (poor OER catalyst) and IrO2(110) (good OER catalyst), towards dinitrogen oxidation and then establish trends/scaling relations to correlate OER and N2OR activities. The challenges associated with electrochemical N2OR are highlighted.

Electrochemical oxidation of N2 to HNO3 (N2OR) is explored in conjunction with parasitic oxygen evolution reaction (OER) on a poor and a good OER catalyst, TiO2 and IrO2. We develop scaling relations to correlate OER and N2OR activities on oxides.  相似文献   
26.
Microbial biofilm architecture contains numerous protective features, including extracellular polymeric material that render biofilms impermeable to conventional antimicrobial agents. This study evaluated the efficacy of antimicrobial photodynamic inactivation (aPDI) of Enterococcus faecalis biofilms. The ability of a cationic, phenothiazinium photosensitizer, methylene blue (MB) and an anionic, xanthene photosensitizer, rose bengal (RB) to inactivate biofilms of E. faecalis (OG1RF and FA 2-2) and disrupt the biofilm structure was evaluated. Bacterial cells were tested as planktonic suspensions, intact biofilms and biofilm-derived suspensions obtained by the mechanical disruption of biofilms. The role of a specific microbial efflux pump inhibitor (EPI), verapamil hydrochloride in the MB-mediated aPDI of E. faecalis biofilms was also investigated. The results showed that E. faecalis biofilms exhibited significantly higher resistance to aPDI when compared with E. faecalis in suspension (P < 0.001). aPDI with cationic MB produced superior inactivation of E. faecalis strains in a biofilm along with significant destruction of biofilm structure when compared with anionic RB (P < 0.05). The ability to inactivate biofilm bacteria was further enhanced when the EPI was used with MB (P < 0.001). These experiments demonstrated the advantage of a cationic phenothiazinium photosensitizer combined with an EPI to inactivate biofilm bacteria and disrupt biofilm structure.  相似文献   
27.
M Anand  RB Sunoj 《Organic letters》2012,14(17):4584-4587
The mechanism of cooperativity offered by AlMe(3) in a Ni-catalyzed dehydrogenative cycloaddition between substituted formamides and an alkyne is investigated by using DFT(SMD(toluene)/M06/6-31G**) methods. The preferred pathway is identified to involve dual C-H activation, with first a higher barrier formyl C(sp(2))-H oxidative insertion followed by benzylic methyl C(sp(3))-H activation. The cooperativity is traced to be of kinetic origin as evidenced by stabilized transition states when AlMe(3) is bound to the formyl group, particularly in the oxidative insertion step.  相似文献   
28.
29.
In this study, new series of azetidine derivatives were synthesized ( 4a-n ) from isoniazide ( 1 ), Aromatic aldehydes ( 2a-n ), dihydropyran ( 3 ) using SnCl2 catalyst, via one pot multicomponent reaction/cycloaddition reaction. The synthesized azetidine derivatives were characterized by IR, 1H NMR and 13C NMR and have been screened for antimicrobial, antituberculosis and anti-inflammatory activities. In relation to Staphylococcus aureus (ATCC 25923) promising antibacterial activity was shown, compounds 4e and 4k , followed by compounds 4h , 4n , 4f , 4g and 4l . The synthesized azetidine derivatives, 4a , 4e , 4j and 4m (with zone 12 mm) displayed antituberculosis activity. But its lower potential than, the standard streptomycin (with zone 18 mm). Further 4d compound alone displayed similar activity.  相似文献   
30.
Inspired by significant local distortions found near vacancies in a neutron pair distribution function analysis study (G. King et al., Inorg. Chem. 2012, 51, 13060) of Sr2 MSbO5.5 (M = Ca and Sr), this computational study finds minimum-energy structures with these and related distortions using density functional theory (DFT) with the Perdew-Burke-Ernzerhof (PBE) functional as implemented in the Vienna Ab Initio Simulations Package (VASP) (G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169; G. Kresse and J. Hafner, Phys. Rev. B, 1993, 47, 558; G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15). All structures were optimized using the conjugate gradient method. The global minima found for both systems featured trigonal bipyramid SbO5 structures and edge sharing with M-centered polyhedra. However, while calcium ions occupied full and partial octahedra, the larger strontium ions were more commonly found in full and partial pentagonal bipyramids. Molecular dynamics with velocity rescaling at 1200 K revealed movements of the oxygen vacancy via polyhedral rotations. This work highlights the need to consider both square pyramid to trigonal bipyramid rearrangements around small ions and rotational polyhedral movements in simulating oxygen vacancy conduction in oxygen-deficient double perovskites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号